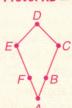
6. If GH = RS, then GH - VW = RS - VW. Subtraction

8. If $\overline{JK} \cong \overline{XY}$ and $\overline{XY} \cong \overline{LM}$, then $\overline{JK} \cong \overline{LM}$. Transitive

(pages 139-144)



Statements (Reasons)

1.
$$\overline{AB} \cong \overline{AF}$$
, $\overline{AF} \cong \overline{ED}$ (Given)

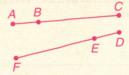
2.
$$\overline{AB} \cong \overline{ED}$$
 (Transitive)

3.
$$\overline{ED} \cong \overline{CD}$$
 (Given)

4.
$$\overline{AB} \cong \overline{CD}$$
 (Transitive)

10. Given:
$$AC = DF$$
, $AB = DE$

Prove:
$$BC = EF$$



Statements (Reasons)

- 1. AC = AB + BC and DF = DE + EF (Segment Addition Postulate)
- 2. AC = DF (Given)
- 3. AB + BC = DE + EF(Substitution)
- 4. AB = DE (Given)
- 5. BC = EF (Subtraction)

Justify each statement with a property of equality or a property of congruence.

- 1. If CD = OP, then CD + GH = OP + GH. Addition 2. If $\overline{MN} \cong \overline{PQ}$, then $\overline{PQ} \cong \overline{MN}$. Symmetric
- 3. If $\overline{TU} \cong \overline{JK}$ and $\overline{JK} \cong \overline{DF}$, then $\overline{TU} \cong \overline{DF}$. Transitive 4. If AB = 10 and CD = 10, then AB = CD. Substitute
- 5. $\overline{XB} \cong \overline{XB}$ Reflexive
- 7. If EF = XY, then EF + KL = XY + KL. Addition

Write a two-column proof. 9-10. See margin.

- 9. Given: $\overline{AB} \cong \overline{AF}$, $\overline{AF} \cong \overline{ED}$, $\overline{ED} \cong \overline{CD}$
- Prove: $\overline{AB} \cong \overline{CD}$

10. Given: AC = DF, AB = DE

Prove: BC = EF

Lesson 2-8

Find the measure of each numbered angle.

1.
$$m \angle 9 = 141 + x$$

 $m \angle 10 = 25 + x$

$$m \angle 12 = x + 10$$

 $m \angle 13 = 3x + 30$

$$m \angle 13 = 3x + 30$$

2. $m \angle 11 = x + 40$

$$= 3x + 30$$
 $m \angle 11 = 60,$
 $m \angle 12 = 30,$

$$m \angle 15 = 4x + 50$$

 $m \angle 16 = x + 45$

3. $m \angle 14 = x + 25$

(pages 107–114)

$m \angle 10 = 32$ $m \angle 13 = 90$

Determine whether the following statements are always, sometimes, or never true.

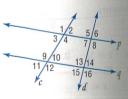
- 4. Two angles that are complementary are congruent. sometimes
- 5. Two angles that form a linear pair are complementary. **never**
- 6. Two congruent angles are supplementary. sometimes
- 7. Perpendicular lines form four right angles. always
- 8. Two right angles are supplementary. always
- 9. Two lines intersect to form four right angles. **sometimes**

Lesson 3-1

- For Exercises 1-3, refer to the figure at the right.
- 1. Name all segments parallel to \overline{AE} . \overline{LP}
- 2. Name all planes intersecting plane BCN.
- 3. Name all segments skew to \overline{DC} .
- 2. ABM. OCN. ABC. LMN. AEP
- 3. BM, AL, EP, OP, PL, LM, MN

Identify each pair of angles as alternate interior, alternate exterior, corresponding, or consecutive interior angles.

- 4. $\angle 2$ and $\angle 5$ cons. int. 5. $\angle 9$ and $\angle 13$ corresponding
- 6. $\angle 12$ and $\angle 13$ alt. int. 7. $\angle 3$ and $\angle 6$ alt. ext.



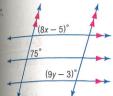
(pages 126-131)

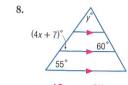
758 Extra Practice

con 3-2

the figure, $m \angle 5 = 72$ and $m \angle 9 = 102$.

ad x and y in each figure.



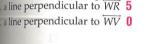


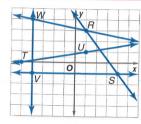
$$x = 12; y = 65$$

son 3-3

d the slope of each line.

- a line parallel to \overrightarrow{TU} a line perpendicular to \overrightarrow{WR} 5





termine whether \overrightarrow{RS} and \overrightarrow{TU} are parallel, perpendicular, or neither.

$$\mathbb{R}(3,5)$$
, $S(5,6)$, $T(-2,0)$, $U(4,3)$ parallel

$$\mathbb{R}(-1,4), S(-3,7), T(5,-1), U(8,1)$$
 perpendicular 11. $\mathbb{R}(-2,5), S(-4,1), T(3,3), U(1,5)$ neither

son 3-4

(pages 145-150)

$$m = 1$$
, y-intercept: -5

2.
$$m = -\frac{1}{2}$$
, y-intercept: $\frac{1}{2}$

3.
$$m = 3, b = -\frac{1}{4} y = 3x -$$

$$4\pi = 3, (-2, 4)$$
 $y - 4 = 3(x + 2)$ 5. $m = -4, (0, 3)$ $y - 3 = -4x$ 6. $m = \frac{2}{3}, (5, -7)$ $y + 7 = \frac{2}{3}(x - 5)$

$$\lim_{x \to 0} y = -2x + 1$$

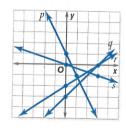
$$\lim_{x \to 0} y = \frac{2}{2}x - 2$$

8.
$$q \ y = x - 3$$

10. $s \ v = -\frac{1}{2}x$

Parallel to line q, contains
$$(2, -5)$$
 $y = x - 7$

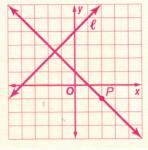
- parallel to line s, contains (-2, -2) y = -Perpendicular to line p, contains (0, 0) $y = \frac{1}{2}x$



Extra Practice 759

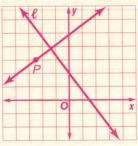
Lesson 3-6

7.
$$d = \frac{7\sqrt{2}}{2}$$
;



8. d = 1.4:

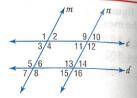
Extra Practice



Lesson 3-5

Given the following information, determine which lines, if any, are parallel. State the postulate or theorem that justifies your answer.

4.
$$m \angle 12 + m \angle 14 = 180$$
 1-4. See margin.



Find x so that $r \parallel s$.

 $(2x + 15)^{\circ}$

7. $(2x + 92)^{\circ}$ $(66 - 11x)^{\circ}$

Lesson 3-6

(pages 159-164)

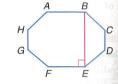
Copy each figure. Draw the segment that represents the distance indicated. 2. I to KL

40

1.
$$P$$
 to \overrightarrow{RS}

15

B to FE



Find the distance between each pair of parallel lines.

4.
$$y = \frac{2}{3}x - 2 \approx 2.08$$

5.
$$y = 2x + 4 \approx 4.02$$

 $y - 2x = -5$

6.
$$x + 4y = -6 \approx 2.43$$

 $x + 4y = 4$

 $y = \frac{2}{3}x + \frac{1}{2}$

COORDINATE GEOMETRY Construct a line perpendicular to ℓ through P. Then find the distance from P to ℓ . 7–8. See margin.

7. Line ℓ contains points (0, 4) and (-4, 0). Point P has coordinates (2, -1).

8. Line ℓ contains points (3, -2) and (0, 2). Point P has coordinates (-2.5, 3).

Lesson 4-1

(pages 178-183)

Use a protractor to classify each triangle as acute, equiangular, obtuse, or right.

3. obtuse

Identify the indicated type of triangles in the figure if $\overline{AB} \cong \overline{CD}, \overline{AD} \cong \overline{BC}, \overline{AE} \cong \overline{BE} \cong \overline{EC} \cong \overline{ED},$ and $m \angle BAD = m \angle ABC = m \angle BCD = m \angle ADC = 90$.

5. obtuse △*ABE*, △*CDE*

6. acute $\triangle BEC$, $\triangle AED$ 7. isosceles $\triangle ABE$, $\triangle CDE$, $\triangle BEC$, $\triangle AED$

4. $\triangle DAB$, $\triangle ABC$, $\triangle BCD$, $\triangle ADC$

8. Find a and the measure of each side of equilateral triangle MNO if MN = 5a, NO = 4a + 6, and MO = 7a - 12. a = 6; MN = NO = MO = 30

9. Triangle *TAC* is an isosceles triangle with $\overline{TA} \cong \overline{AC}$. Find b, TA, AC, and TC if TA = 3b + 1, AC = 4b - 11, and TC = 6b - 2. b = 12; TA = AC = 37, TC = 70

760 Extra Practice

Lesson 4-3

5. Given: $\triangle ANG \cong \triangle NGA$, $\triangle NGA \cong \triangle GAN$

Prove: △AGN is

equilateral and equiangular.

Proof: Statements (Reasons)

1. $\triangle ANG \cong \triangle NGA$ (Given)

2. $AN \cong NG$, $\angle A \cong \angle N$ (CPCTC)

3. $\triangle NGA \cong \triangle GAN$ (Given)

4. $\overline{NG} \cong \overline{GA}$, $\angle N \cong \angle G$ (CPCTC)

5. $\overline{AN} \cong \overline{NG} \cong \overline{GA}$ (Transitive Property of \cong)

6. $\triangle AGN$ is equilateral. (Def. of equilateral \triangle)

7. $\angle A \cong \angle N \cong \angle G$ (Transitive Property of \cong)

8. $\triangle AGN$ is equiangular. (Def. of equiangular \triangle)